Files
rackstack/cases/rack/rackCase.scad
2022-11-05 18:47:13 -04:00

365 lines
8.2 KiB
OpenSCAD

include <../common.scad>
include <./screws.scad>
include <../risers.scad>
// TODO currently only for rockpro64 - make generic
vU = 3;
uHeight = 10;
// Front Plate dimensions
frontPlateScrewDiffV = uHeight*vU;
frontPlateScrewDiffH = 180;
frontPlateHeightTopSpace = 0.25; // Give some space at the top for the lid
frontPlateHeightBottomSpace = 0;
frontPlateHeight = (vU+1)*uHeight - (frontPlateHeightBottomSpace+frontPlateHeightTopSpace);
frontPlateWidth = 190;
frontPlateBottomScrewToHEdge = uHeight/2 + frontPlateHeightBottomSpace;
frontPlateTopScrewToHEdge = uHeight/2 + frontPlateHeightTopSpace;
frontPlateScrewToVEdge = (frontPlateWidth - frontPlateScrewDiffH)/2;
frontPlateThickness = 2.5;
plateScrewToBoxMin = 6;
// BOX CONFIG
// box dimensions
boxDepth = 132;
boxWidth = 160;
boxBottomThickness = 2;
boxSideThickness = 2;
boxBackThickness = 2;
boxFrontThickness = 2;
boxTopSpace = 1; // meant for lids?
boxBottomSpace = 1; // meant to be used for boxes that expect support rails (edit: not using right now)
boxHeight = (vU+1) * uHeight - (boxBottomSpace+boxTopSpace);
boxInnerDepth = boxDepth - (boxBackThickness+boxFrontThickness);
boxInnerHeight = boxHeight - boxBottomThickness; // TODO support lids
boxInnerWidth = boxWidth - 2*boxSideThickness;
// all of these are defined on the xy plane with centered zLen height
// 'rise' is meant model how raised a pcb is. More specifically, the distance between the top of
// the pcb and the bottom of the inside of the case
module frontFace_N(zLen, rise) {
translate(v=[7.5,2,0])
cube(size=[boxInnerWidth - 15, boxInnerHeight-8, zLen]);
}
module backFace_N(zLen, rise) {
translate(v=[7.5,2,0])
cube(size=[boxInnerWidth - 15, boxInnerHeight-8, zLen]);
}
module leftFace_N(zLen, rise) {
translate(v=[7.5,2,0])
cube(size=[boxInnerDepth - 15, boxInnerHeight-8, zLen]);
}
module rightFace_N(zLen, rise) {
translate(v=[7.5,2,0])
cube(size=[boxInnerDepth - 15, boxInnerHeight-8, zLen]);
}
module boxBody() {
// save this transformation...
// translate(v=[(plateScrewDiffH-boxWidth)/2.0,0,boxBottomSpace -plateScrewToHEdge])
// convert to inside box space
translate(v=[-boxSideThickness, -boxFrontThickness, -boxBottomThickness])
difference() {
cube(size=[boxWidth, boxDepth, boxHeight]);
translate(v=[boxSideThickness, boxFrontThickness, boxBottomThickness])
cube(size=[boxWidth-2*boxSideThickness, boxDepth-(boxBackThickness+boxFrontThickness), inf]);
}
}
module boxBodyWithHoles() {
m_trans_back =
[ [-1, 0, 0, boxInnerWidth],
[0, -1, 0, boxInnerDepth-boxBackThickness],
[0, 0, 1, 0],
[0, 0, 0, 1]];
m_trans_left_side =
[ [cos(-90), -sin(-90), 0, 0],
[sin(-90), cos(-90), 0, boxInnerDepth],
[0, 0, 1, 0],
[0, 0, 0, 1]];
m_trans_right_side =
[ [cos(90), -sin(90), 0, boxInnerWidth],
[sin(90), cos(90), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]];
difference() {
boxBody();
union() {
rotate(a=[90,0,0])
frontFace_N(10, 0);
multmatrix(m_trans_back)
rotate(a=[90,0,0])
backFace_N(10, 0);
multmatrix(m_trans_left_side)
rotate(a=[90,0,0])
leftFace_N(10, 0);
multmatrix(m_trans_right_side)
rotate(a=[90,0,0])
rightFace_N(10, 0);
}
}
}
// lid + lugging
module cylinderLug_M(length, radius) {
rotate(a=[0,90,0])
cylinder(h=length, r=radius, center=true);
}
module cylinderLug(lMult=1, rMult=1) {
cylinderLug_M(6*lMult, 1*rMult);
}
function lerp(u, a, b) = (1-u)*a + u*b;
module lugLine(a,b, numLugs, lMult=1, rMult=1) {
assert(numLugs>0);
// require straight line that is level (same z values) either parallel with the x axis, or y axis
// this just avoids some math and simplifies things
assert(a[2] == b[2] && (a[0]==b[0] || a[1]==b[1]));
direction = norm(b-a);
for (i=[0:numLugs-1]) {
u = (i+1)/(numLugs+1);
if (a[1] == b[1]) {
translate(v=lerp(u,a,b))
cylinderLug(lMult, rMult);
} else if (a[0] == b[0]) {
translate(v=lerp(u,a,b))
rotate(a=[0,0,90])
cylinderLug(lMult,rMult);
}
}
}
module lugProfile(height, sideEps=0, lMult=1, rMult=1) {
points = [
[0+sideEps,0+sideEps,height],
[boxInnerWidth-sideEps,0+sideEps,height],
[boxInnerWidth-sideEps, boxInnerDepth-sideEps, height],
[0+sideEps, boxInnerDepth-sideEps, height]
];
for (i=[1:4]) {
lugLine(points[(i-1)%4], points[i%4], 3, lMult, rMult);
}
}
module lidBody() {
topLidThickness = 1;
bottomLidThickness = 4;
bottomLidWallThickness = 2;
translate(v=[-boxSideThickness, -boxFrontThickness,0])
cube(size=[boxWidth, boxDepth, topLidThickness]);
difference() {
innerWallTolerance = 0.1;
innerWallWidth = boxWidth - 2 * boxSideThickness - innerWallTolerance;
innerWallDepth = boxDepth - (boxFrontThickness + boxBackThickness) - innerWallTolerance;
translate(v = [innerWallTolerance/2, innerWallTolerance/2, topLidThickness])
cube(size = [innerWallWidth, innerWallDepth,
bottomLidThickness]);
translate(v = [bottomLidWallThickness, bottomLidWallThickness, topLidThickness])
cube(size = [boxWidth - 2*boxSideThickness - 2*bottomLidWallThickness, boxDepth - (boxFrontThickness + boxBackThickness) - 2*bottomLidWallThickness,
bottomLidThickness]);
}
}
module lid() {
difference() {
union() {
lidBody();
// todo figure out relation
lugProfile(3, sideEps = 0.25, lMult=0.95, rMult=0.95);
}
for (i=[0:7]) {
translate(v=[i*17 + 14, 15,-2])
minkowski() {
cylinder(r=1,h=1);
cube(size = [10, 20, 5]);
}
}
}
}
module case() {
difference() {
union() {
boxBodyWithHoles();
translate(v=[20,5, -1])
rockProScrewMounts();
// lugs
translate(v=[0,-(1+boxFrontThickness),0])
cube(size=[4,1,4]);
translate(v=[boxInnerWidth-4,-(1+boxFrontThickness),0])
cube(size=[4,1,4]);
}
union() {
lugProfile(boxHeight-4); // todo reliant on box bottom thickness
translate(v=[32,25,-2])
minkowski() {
cylinder(r=1,h=0.1);
cube(size = [50, 80, 5]);
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////
module _frontPlateBody() {
cube(size=[frontPlateWidth,frontPlateThickness,frontPlateHeight]);
}
module _plateHole() {
rotate(a=[90,0,0])
cylinder(r=m4RadiusSlacked, h=inf, center=true);
}
module frontPlate() {
difference() {
_frontPlateBody();
translate(v=[frontPlateScrewToVEdge, 0, frontPlateBottomScrewToHEdge])
union() {
// TODO: introduce helper modules for this pattern
_plateHole();
translate(v=[frontPlateScrewDiffH,0,0])
_plateHole();
translate(v=[0,0,frontPlateScrewDiffV])
_plateHole();
translate(v=[frontPlateScrewDiffH,0,frontPlateScrewDiffV])
_plateHole();
}
}
}
module frontPlateAligned() {
difference() {
// Aligned with case
translate(v = [
-(boxSideThickness + (frontPlateWidth - boxWidth) / 2),
-(boxFrontThickness+frontPlateThickness),
-boxBottomThickness
])
frontPlate();
union() {
// lugs
translate(v=[-0.05,-(1.5+boxFrontThickness),-0.05])
cube(size=[4+0.1,2,4+0.1]);
translate(v=[-0.05 + (boxInnerWidth-4),-(1.5+boxFrontThickness),-0.05])
cube(size=[4+0.1,2,4+0.1]);
}
}
}
module rockPro64FrontPlate() {
difference() {
frontPlateAligned();
union() {
translate(v=[-1,-4,22])
rotate(a=[90,0,0])
linear_extrude(10)
text("rock-2", font="Tlwg Mono:style=Bold", size=9);
minkowski() {
rotate(a=[90,0,0])
cylinder(h=1, r=1);
union() {
translate(v = [24, - 10, 7])
cube(size = [62, 10, 9]);
translate(v = [52, - 10, 7])
cube(size = [34, 10, 18]);
}
}
intersection() {
translate(v = [95, - 10, 3])
cube(size = [70, 20, 26]);
for(i=[0:9]) {
translate(v = [83 + 8*i, - 10, 0])
rotate(a=[0,30,0])
cube(size=[3, 15, 50]);
}
}
}
}
}
rockPro64FrontPlate();
//translate(v=[0,-20,0])
//frontPlateAligned();
//case();
//translate(v=[0,0,50])
//mirror(v=[0,0,1])
//lid();