bulk
This commit is contained in:
1
cases/rpi/.#front.scad
Symbolic link
1
cases/rpi/.#front.scad
Symbolic link
@ -0,0 +1 @@
|
||||
zhao@zhao-desktop.12132:1663410391
|
||||
149
cases/rpi/rpi2b.scad
Normal file
149
cases/rpi/rpi2b.scad
Normal file
@ -0,0 +1,149 @@
|
||||
include <../common.scad>
|
||||
|
||||
// All coordinates are in [x,y], or [x,y,z] format
|
||||
|
||||
pcbDimensions = [56.0, 85.1]; // [x,y]
|
||||
pcbThickness = 1.42;
|
||||
|
||||
|
||||
// [+x, -x, +y, -y]
|
||||
pcbCaseSpace = [5, 2, 2, 2];
|
||||
|
||||
pcbRise = 3;
|
||||
caseWallThickness = 2;
|
||||
caseBottomThickness = 2;
|
||||
|
||||
|
||||
mountPointDiameter = 2.69;
|
||||
mountPoints = [[3.65,23.30,0], [3.65,pcbDimensions[1]-3.65,0], [pcbDimensions[0]-3.65,23.30,0], [pcbDimensions[0]-3.65,pcbDimensions[1]-3.65,0]];
|
||||
|
||||
module pcb() {
|
||||
cube(size=[pcbDimensions[0], pcbDimensions[1], pcbThickness]);
|
||||
}
|
||||
|
||||
module pcbCaseBottom_() {
|
||||
translate(v=[-pcbCaseSpace[1]-caseWallThickness, -pcbCaseSpace[3]-caseWallThickness, -caseBottomThickness-pcbRise])
|
||||
difference() {
|
||||
cube(size=[
|
||||
pcbDimensions[0]+pcbCaseSpace[0]+pcbCaseSpace[1] + 2*caseWallThickness,
|
||||
pcbDimensions[1]+pcbCaseSpace[2]+pcbCaseSpace[3] + 2*caseWallThickness,
|
||||
26 // 3u case, subtracted for and other bullshit
|
||||
]);
|
||||
translate(v=[caseWallThickness, caseWallThickness, caseBottomThickness])
|
||||
cube(size=[
|
||||
pcbDimensions[0]+pcbCaseSpace[0]+pcbCaseSpace[1],
|
||||
pcbDimensions[1]+pcbCaseSpace[2]+pcbCaseSpace[3],
|
||||
26 // 3u case, subtracted 4 for lid and bullshit
|
||||
]);
|
||||
}
|
||||
}
|
||||
|
||||
module pcbCaseWithRisers_() {
|
||||
union() {
|
||||
translate(v=[0,0,-pcbRise]){
|
||||
mountPoints_N(pcbRise, mountPointDiameter, mountPointDiameter, 32, false);
|
||||
mountPoints_N(pcbRise+2, mountPointDiameter/2.5, mountPointDiameter/2.5, 32, false);
|
||||
}
|
||||
pcbCaseBottom_();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
module cutoutProfileAirflow_N() {
|
||||
|
||||
// bottom cutouts
|
||||
union() {
|
||||
for (i=[0:11]) {
|
||||
translate(v=[pcbDimensions[0]/2.0, i*6 + 10,0])
|
||||
minkowski() {
|
||||
cube(size=[30,1,20], center=true);
|
||||
cylinder(h=1,r=1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// back cutouts
|
||||
for (i=[0:4]) {
|
||||
translate(v=[i*10 + 7,pcbDimensions[1],4])
|
||||
minkowski() {
|
||||
|
||||
cube(size=[3,100,10], center=false);
|
||||
rotate(a=[90,0,0])
|
||||
cylinder(h=1,r=2);
|
||||
}
|
||||
}
|
||||
|
||||
// front cutout
|
||||
translate(v=[pcbDimensions[0],2.5,1])
|
||||
cube(size=[inf50, 80, 15]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
difference() {
|
||||
|
||||
union() {
|
||||
pcbCaseWithRisers_();
|
||||
|
||||
// lugs
|
||||
translate(v=[pcbDimensions[0]+caseWallThickness+pcbCaseSpace[0],-caseWallThickness-pcbCaseSpace[3],-pcbRise-caseBottomThickness])
|
||||
cube(size=[2,5,5]);
|
||||
|
||||
translate(v=[pcbDimensions[0]+caseWallThickness+pcbCaseSpace[0],pcbDimensions[1]+pcbCaseSpace[2]-5+caseWallThickness,-pcbRise-caseBottomThickness])
|
||||
cube(size=[2,5,5]);
|
||||
|
||||
}
|
||||
|
||||
union() {
|
||||
cutoutProfile_N();
|
||||
cutoutProfileAirflow_N();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//cutoutProfileAirflow_N();
|
||||
|
||||
|
||||
|
||||
module mountPoints_N(cylHeight, cylRad1, cylRad2, cylFn, center) {
|
||||
for (i=[0:3]) {
|
||||
p = mountPoints[i];
|
||||
translate(v=[p[0], p[1], p[2]])
|
||||
cylinder(r1=cylRad1, r2=cylRad2, h=cylHeight, $fn=cylFn, center=center);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
*difference() {
|
||||
union () {
|
||||
pcb();
|
||||
mountPoints_N(7, mountPointDiameter/2.5, mountPointDiameter/2.5, 32, false);
|
||||
mountPoints_N(5, mountPointDiameter, mountPointDiameter, 32, false);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
module cutoutProfile_N() {
|
||||
|
||||
|
||||
color([1,0,1])
|
||||
union() {
|
||||
// front I/O
|
||||
mirror(v=[0,1,0])
|
||||
translate(v=[2, -eps*100, pcbThickness])
|
||||
cube(size=[52.0 + 0.1, inf50, 16.0 + 0.1]);
|
||||
|
||||
// side I/O
|
||||
|
||||
translate(v=[-48, (pcbDimensions[1]-54)-5, pcbThickness])
|
||||
cube(size=[inf50, 54, 8]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//cutoutProfile_N();
|
||||
//pcb();
|
||||
|
||||
40798
cases/rpi/rpi2b.stl
Normal file
40798
cases/rpi/rpi2b.stl
Normal file
File diff suppressed because it is too large
Load Diff
30438
cases/rpi/rpi2bDimTest.stl
Normal file
30438
cases/rpi/rpi2bDimTest.stl
Normal file
File diff suppressed because it is too large
Load Diff
22
cases/rpi/top.scad
Normal file
22
cases/rpi/top.scad
Normal file
@ -0,0 +1,22 @@
|
||||
|
||||
|
||||
difference() {
|
||||
union() {
|
||||
cube(size=[67,93,1]);
|
||||
translate(v=[2, 2,1])
|
||||
cube(size=[63,88.8,2]);
|
||||
}
|
||||
|
||||
union() {
|
||||
translate(v=[3.5, 3.5,1])
|
||||
cube(size=[60,85,3]);
|
||||
|
||||
for(i=[0:7]) {
|
||||
translate(v=[33.5,i*10 + 10,0])
|
||||
minkowski() {
|
||||
cylinder(h=1,r=1);
|
||||
cube(size=[50,5,10], center=true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
2326
cases/rpi/top.stl
Normal file
2326
cases/rpi/top.stl
Normal file
File diff suppressed because it is too large
Load Diff
95
cases/rpi/voronoi.scad
Normal file
95
cases/rpi/voronoi.scad
Normal file
@ -0,0 +1,95 @@
|
||||
|
||||
// (c)2013 Felipe Sanches <juca@members.fsf.org>
|
||||
// licensed under the terms of the GNU GPL version 3 (or later)
|
||||
|
||||
function normalize(v) = v / (sqrt(v[0] * v[0] + v[1] * v[1]));
|
||||
|
||||
//
|
||||
// The voronoi() function generates a 2D surface, which can be provided to
|
||||
// a) linear_extrude() to produce a 3D object
|
||||
// b) intersection() to restrict it to a a specified shape -- see voronoi_polygon.scad
|
||||
//
|
||||
// Parameters:
|
||||
// points (required) ... nuclei coordinates (array of [x, y] pairs)
|
||||
// L ... the radius of the "world" (the pattern is built within this circle)
|
||||
// thickness ... the thickness of the lines between cells
|
||||
// round ... the radius applied to corners (fillet in CAD terms)
|
||||
// nuclei (bool) ... show nuclei sites
|
||||
//
|
||||
// These parameters need to be kept more or less in proportion to each other, and to the distance
|
||||
// apart of points in the point_set. If one or the other parameter is increased or decreased too
|
||||
// much, you'll get no output.
|
||||
//
|
||||
module voronoi(points, L = 200, thickness = 1, round = 6, nuclei = true) {
|
||||
for (p = points) {
|
||||
difference() {
|
||||
minkowski() {
|
||||
intersection_for(p1 = points){
|
||||
if (p != p1) {
|
||||
angle = 90 + atan2(p[1] - p1[1], p[0] - p1[0]);
|
||||
|
||||
translate((p + p1) / 2 - normalize(p1 - p) * (thickness + round))
|
||||
rotate([0, 0, angle])
|
||||
translate([-L, -L])
|
||||
square([2 * L, L]);
|
||||
}
|
||||
}
|
||||
circle(r = round, $fn = 20);
|
||||
}
|
||||
if (nuclei)
|
||||
translate(p) circle(r = 1, $fn = 20);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// The random_voronoi() function is the helper wrapper over the voronoi() core.
|
||||
// It generates random nuclei site coordinates into the square area,
|
||||
// passing other arguments to voronoi() unchanged.
|
||||
//
|
||||
// Parameters:
|
||||
// n ... number of nuclei sites to be generated
|
||||
// nuclei (bool) ... show nuclei sites
|
||||
// L ... the radius of the "world" (the pattern is built within this circle)
|
||||
// thickness ... the thickness of the lines between cells
|
||||
// round ... the radius applied to corners (fillet in CAD terms)
|
||||
// min ... minimum x and y coordinate for nuclei generation
|
||||
// max ... maximum x and y coordinate for nuclei generation
|
||||
// seed ... seed for the random generator (random if undefined)
|
||||
// center (bool) ... move resulting pattern to [0, 0] if true
|
||||
//
|
||||
module random_voronoi(n = 20, nuclei = true, L = 200, thickness = 1, round = 6, min = 0, max = 100, seed = undef, center = false) {
|
||||
seed = seed == undef ? rands(0, 100, 1)[0] : seed;
|
||||
echo("Seed", seed);
|
||||
|
||||
// Generate points.
|
||||
x = rands(min, max, n, seed);
|
||||
y = rands(min, max, n, seed + 1);
|
||||
points = [ for (i = [0 : n - 1]) [x[i], y[i]] ];
|
||||
|
||||
// Center Voronoi.
|
||||
offset_x = center ? -(max(x) - min(x)) / 2 : 0;
|
||||
offset_y = center ? -(max(y) - min(y)) / 2 : 0;
|
||||
translate([offset_x, offset_y])
|
||||
|
||||
voronoi(points, L = L, thickness = thickness, round = round, nuclei = nuclei);
|
||||
}
|
||||
|
||||
// example with an explicit list of points:
|
||||
point_set = [
|
||||
[0, 0], [30, 0], [20, 10], [50, 20], [15, 30], [85, 30], [35, 30], [12, 60],
|
||||
[45, 50], [80, 80], [20, -40], [-20, 20], [-15, 10], [-15, 50]
|
||||
];
|
||||
//voronoi(points = point_set, round = 4, nuclei = true);
|
||||
|
||||
module voronoi3u_N(h) {
|
||||
intersection() {
|
||||
translate(v=[10,5,0])
|
||||
cube(size=[160, 10, h]);
|
||||
translate(v=[20,-52,0])
|
||||
scale(v=[0.40,0.44,10])
|
||||
linear_extrude(height=10)
|
||||
random_voronoi(n = 128, round = 2, min = 0, max = 350, seed = 40, thickness=3.5, nuclei=false);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user