parametrize screw/hex nut types

This commit is contained in:
zhao
2023-01-01 16:20:47 -05:00
parent d0c89d13c6
commit 1b923fa215
4 changed files with 162 additions and 188 deletions

5
.idea/codeStyles/codeStyleConfig.xml generated Normal file
View File

@ -0,0 +1,5 @@
<component name="ProjectCodeStyleConfiguration">
<state>
<option name="PREFERRED_PROJECT_CODE_STYLE" value="Default" />
</state>
</component>

View File

@ -23,10 +23,12 @@ screwDiff = 10;
numRailScrews = 20; numRailScrews = 20;
// Screw type used for rackmount units. See screws.scad. // Screw type used for rackmount units. See screws.scad.
railMainScrewType = "m4"; mainRailScrewType = "m4";
// Screw type used to affix side rails. // Screw type used to affix side rails.
railSideMountScrewType = "m4"; mainRailSideMountScrewType = "m4";
// Screw type used for constructing the actual rack frame. // Screw type used for constructing the actual rack frame.
rackScrewType = "m3"; rackFrameScrewType = "m3";
// Currently, only m3 screws are supported here (tolerance issues)
assert(rackFrameScrewType == "m3");

View File

@ -1,108 +1,48 @@
include <./config.scad> include <./config.scad>
include <./screws.scad> include <./screws.scad>
// Distance between the middle of a screw mount and the rail's vertical edges
railScrewHoleToInnerEdge = 5;
railScrewHoleToOuterEdge = 5;
// Distance between the midpoint of the rail screw holes.
rackMountScrewWidth = maxUnitWidth + 2*railScrewHoleToInnerEdge;
railFrontThickness = 6; // Make sure that the nuts for the chosen screw type can slot within the front face
railSideMountThickness = 2.5;
railOtherThickness = 2.5;
// Extra spacing for the rack unit screws.
frontScrewSpacing = 8;
/* Small horizontal planes at the top and bottom of the main rails. Used so we can fasten the rail to the frame /* Small horizontal planes at the top and bottom of the main rails. Used so we can fasten the rail to the frame
Note that this value is also used for a depression at the bottom/top of the frame for aligning the rail */ Note that this value is also used for a depression at the bottom/top of the frame for aligning the rail */
railFootThickness = 3; railFootThickness = 3;
railTotalHeight = screwDiff * (numRailScrews+1) + 2*railFootThickness; railTotalHeight = screwDiff * (numRailScrews + 1) + 2 * railFootThickness;
mainRail();
sideSupportExtraSpace = 2; echo("Total Rail Height = ", railTotalHeight);
sideSupportScrewHoleToFrontEdge = 5;
sideSupportScrewHoleToBackEdge = 4.5;
sideSupportDepth = sideSupportScrewHoleToBackEdge + sideSupportScrewHoleToFrontEdge;
frontFaceWidth = railScrewHoleToInnerEdge + railScrewHoleToOuterEdge;
module _frontRailSegment() {
difference() {
cube(size=[frontFaceWidth, railFrontThickness, railTotalHeight]);
for (i=[1:numRailScrews]) {
translate(v=[railScrewHoleToOuterEdge, railFrontThickness/2, i*screwDiff + railFootThickness])
rotate(a=[90,0,0])
m4HexNutPocketNegative();
}
}
}
module _connectingLBracketRailSegment() {
difference() {
cube(size = [railOtherThickness, frontScrewSpacing + railOtherThickness, railTotalHeight]);
union () {
translate(v=[0,4,railFootThickness + screwDiff / 2])
rotate(a=[0,90,0])
cylinder(r=m3RadiusSlacked, h = 10, $fn=32, center=true);
translate(v=[0,4,railTotalHeight-(railFootThickness + screwDiff / 2)])
rotate(a=[0,90,0])
cylinder(r=m3RadiusSlacked, h = 10, $fn=32, center=true);
}
}
translate(v=[0, frontScrewSpacing + railOtherThickness, 0])
rotate(a=[0,0,270])
cube(size=[railOtherThickness, frontFaceWidth - sideSupportExtraSpace, railTotalHeight]);
}
module _sideSupportSegment() {
difference() {
cube(size=[sideSupportDepth, railSideMountThickness, railTotalHeight]);
for (i=[1:numRailScrews]) {
translate(v=[sideSupportScrewHoleToFrontEdge, railFrontThickness/2, i*screwDiff + railFootThickness])
rotate(a=[90,0,0])
cylinder(r=m4RadiusSlacked, h=10, $fn=32);
}
}
}
module _railFeet() {
difference() {
cube(size = [frontFaceWidth - sideSupportExtraSpace, sideSupportDepth, railFootThickness]);
hull() {
translate(v = [1.5, 5, 0])
cylinder(r = m3RadiusSlacked, h = 10, $fn = 32);
translate(v = [0, 5, 0])
cube(size=[0.1, m3RadiusSlacked*2, 10], center=true);
}
}
}
module mainRail() { module mainRail() {
union() {
// Distance between the middle of a screw mount and the rail's vertical edges
railScrewHoleToInnerEdge = 5;
railScrewHoleToOuterEdge = 5;
// Distance between the midpoint of the rail screw holes.
rackMountScrewWidth = maxUnitWidth + 2 * railScrewHoleToInnerEdge;
railFrontThickness = 6; // Make sure that the nuts for the chosen screw type can slot within the front face
railSideMountThickness = 2.5;
railOtherThickness = 2.5;
// Extra spacing for the rack unit screws.
frontScrewSpacing = 8;
sideSupportExtraSpace = 2;
sideSupportScrewHoleToFrontEdge = 5;
sideSupportScrewHoleToBackEdge = 4.5;
sideSupportDepth = sideSupportScrewHoleToBackEdge + sideSupportScrewHoleToFrontEdge;
frontFaceWidth = railScrewHoleToInnerEdge + railScrewHoleToOuterEdge;
union() {
_frontRailSegment(); _frontRailSegment();
translate(v = [0, railFrontThickness, 0]) translate(v = [0, railFrontThickness, 0])
_connectingLBracketRailSegment(); _connectingLBracketRailSegment();
translate(v = [frontFaceWidth-sideSupportExtraSpace, railFrontThickness + railOtherThickness + frontScrewSpacing, 0]) translate(v = [frontFaceWidth - sideSupportExtraSpace, railFrontThickness + railOtherThickness + frontScrewSpacing,
0])
rotate(a = [0, 0, 90]) rotate(a = [0, 0, 90])
_sideSupportSegment(); _sideSupportSegment();
@ -110,12 +50,72 @@ module mainRail() {
translate(v = [0, railFrontThickness + railOtherThickness + frontScrewSpacing, 0]) { translate(v = [0, railFrontThickness + railOtherThickness + frontScrewSpacing, 0]) {
_railFeet(); _railFeet();
translate(v = [0, 0, railTotalHeight-railFootThickness]) translate(v = [0, 0, railTotalHeight - railFootThickness])
_railFeet(); _railFeet();
} }
} }
module _frontRailSegment() {
difference() {
cube(size = [frontFaceWidth, railFrontThickness, railTotalHeight]);
for (i = [1:numRailScrews]) {
translate(v = [railScrewHoleToOuterEdge, railFrontThickness / 2, i * screwDiff + railFootThickness])
rotate(a = [90, 0, 0])
hexNutPocket_N(mainRailScrewType);
}
}
}
module _connectingLBracketRailSegment() {
difference() {
cube(size = [railOtherThickness, frontScrewSpacing + railOtherThickness, railTotalHeight]);
union() {
translate(v = [0, 4, railFootThickness + screwDiff / 2])
rotate(a = [0, 90, 0])
cylinder(r = screwRadiusSlacked(rackFrameScrewType), h = 10, $fn = 32, center = true);
translate(v = [0, 4, railTotalHeight - (railFootThickness + screwDiff / 2)])
rotate(a = [0, 90, 0])
cylinder(r = screwRadiusSlacked(rackFrameScrewType), h = 10, $fn = 32, center = true);
}
}
translate(v = [0, frontScrewSpacing + railOtherThickness, 0])
rotate(a = [0, 0, 270])
cube(size = [railOtherThickness, frontFaceWidth - sideSupportExtraSpace, railTotalHeight]);
}
module _sideSupportSegment() {
difference() {
cube(size = [sideSupportDepth, railSideMountThickness, railTotalHeight]);
for (i = [1:numRailScrews]) {
translate(v = [sideSupportScrewHoleToFrontEdge, railFrontThickness / 2, i * screwDiff + railFootThickness])
rotate(a = [90, 0, 0])
cylinder(r = screwRadiusSlacked(mainRailSideMountScrewType), h = 10, $fn = 32);
}
}
}
module _railFeet() {
difference() {
cube(size = [frontFaceWidth - sideSupportExtraSpace, sideSupportDepth, railFootThickness]);
hull() {
translate(v = [1.5, 5, 0])
cylinder(r = screwRadiusSlacked(rackFrameScrewType), h = 10, $fn = 32);
translate(v = [0, 5, 0])
cube(size = [0.1, screwRadiusSlacked(rackFrameScrewType) * 2, 10], center = true);
}
}
}
} }
mainRail();
echo("Total Rail Height = ", railTotalHeight);

View File

@ -1,113 +1,80 @@
/* Some common screw dimensions and helper functions/modules */
/* Some common screw dimensions */ inf = 400;
inf = 400; // basically infinity
/********************************************************************************/ /********************************************************************************/
// M3 dimensions // M3 dimensions
m3HoleRadiusSlack = 0.15; m3HoleRadiusSlack = 0.15;
m3Diameter = 3.0; m3Diameter = 3.0;
m3Radius = m3Diameter/2.0; m3Radius = m3Diameter / 2.0;
m3RadiusSlacked = m3Radius + m3HoleRadiusSlack; m3RadiusSlacked = m3Radius + m3HoleRadiusSlack;
// legacy TODO: replace
m3ptr = m3RadiusSlacked;
// NUTS!
m3HexNutWidthAcrossFlats = 5.41; m3HexNutWidthAcrossFlats = 5.41;
m3HexNutWidthAcrossCorners = FtoG(m3HexNutWidthAcrossFlats); m3HexNutWidthAcrossCorners = FtoG(m3HexNutWidthAcrossFlats);
m3HexNutThickness = 2.18; m3HexNutThickness = 2.18;
module m3HexNutPocketNegative() {
hexNutPocketNegative(m3RadiusSlacked,
m3HexNutWidthAcrossCorners/2 + 0.1,
m3HexNutThickness + 0.2);
}
// TODO: remove test
*difference() {
cube(size=[8,12,5], center=true);
rotate(a=[0,0,20])
m3HexNutPocketNegative();
}
*m3HexNutPocketNegative();
/********************************************************************************/ /********************************************************************************/
// M4 dimensions // M4 dimensions
m4HoleRadiusSlack = 0.15; m4HoleRadiusSlack = 0.15;
m4Diameter = 4.0; m4Diameter = 4.0;
m4Radius = m4Diameter/2.0; m4Radius = m4Diameter / 2.0;
m4RadiusSlacked = m4Radius + m4HoleRadiusSlack; m4RadiusSlacked = m4Radius + m4HoleRadiusSlack;
m4HexNutWidthAcrossFlats = 6.89; m4HexNutWidthAcrossFlats = 6.89;
m4HexNutWidthAcrossCorners = FtoG(m4HexNutWidthAcrossFlats); m4HexNutWidthAcrossCorners = FtoG(m4HexNutWidthAcrossFlats);
m4HexNutThickness = 3.07; m4HexNutThickness = 3.07;
module m4HexNutPocketNegative() {
hexNutPocketNegative(m4RadiusSlacked,
m4HexNutWidthAcrossCorners/2 + 0.1,
m4HexNutThickness + 0.2);
}
// TODO: remove test
*difference() {
translate(v=[0,1,0])
cube(size=[10,12,6], center=true);
rotate(a=[0,0,20])
m4HexNutPocketNegative();
}
*m4HexNutPocketNegative();
/********************************************************************************/ /********************************************************************************/
function screwRadiusSlacked(screwType) =
// Convert a regular hexagon widthAcrossFlats to widthAcrossCorners (screwType == "m3")
function FtoG(widthAcrossFlats) = widthAcrossFlats * (2/sqrt(3)); ? m3RadiusSlacked
: (screwType == "m4")
// Convert a regular hexagon widthAcrossCorners to widthAcrossFlats ? m4RadiusSlacked
function GtoF(widthAcrossCorners) = widthAcrossCorners * (sqrt(3)/2); : error("Unsupported screw type");
module hexNutPocketNegative( module hexNutPocket_N(screwType) {
innerRadius, if (screwType == "m3") {
widthAcrossCorners, hexNutPocketHelper_N(m3RadiusSlacked,
thickness) m3HexNutWidthAcrossCorners / 2 + 0.1,
m3HexNutThickness + 0.2);
} else if (screwType == "m4") {
hexNutPocketHelper_N(m4RadiusSlacked,
m4HexNutWidthAcrossCorners / 2 + 0.1,
m4HexNutThickness + 0.2);
} else {
error("Unsupported screw type");
}
}
module hexNutPocketHelper_N(
innerRadius,
widthAcrossCorners,
thickness)
{ {
union() { union() {
hull() { hull() {
// hexagonal cylinder representing where the nut should fit // hexagonal cylinder representing where the nut should fit
cylinder(r=widthAcrossCorners, h=thickness, center=true, $fn=6); cylinder(r = widthAcrossCorners, h = thickness, center = true, $fn = 6);
// negative volume for sliding in the nut // negative volume for sliding in the nut
translate(v=[inf,0,0]) translate(v = [inf, 0, 0])
cylinder(r=widthAcrossCorners, h=thickness, center=true, $fn=6); cylinder(r = widthAcrossCorners, h = thickness, center = true, $fn = 6);
} }
// negative volume for screw lead // negative volume for screw lead
translate(v=[0,0,-10]) translate(v = [0, 0, - 10])
cylinder(r=innerRadius, h = inf, $fn=32); cylinder(r = innerRadius, h = inf, $fn = 32);
hull() { hull() {
translate(v=[inf,0,0]) translate(v = [inf, 0, 0])
cylinder(r=innerRadius, h = inf, $fn=32); cylinder(r = innerRadius, h = inf, $fn = 32);
cylinder(r=innerRadius, h = inf, $fn=32); cylinder(r = innerRadius, h = inf, $fn = 32);
} }
} }
} }
// Convert a regular hexagon widthAcrossFlats to widthAcrossCorners
function FtoG(widthAcrossFlats) = widthAcrossFlats * (2 / sqrt(3));
// Convert a regular hexagon widthAcrossCorners to widthAcrossFlats
function GtoF(widthAcrossCorners) = widthAcrossCorners * (sqrt(3) / 2);